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ABSTRACT [l Yy ?é 5

A circuit to control charge current
entering nickel-cadmium cells with auxiliary
electrodes ("three-terminal” cells) using a
shunt method of control has been developed by
MEL for use in satellite power systems requir-
ing minimum weight and space with optimum con-
trol and temperature compensation. Reduction
in charge current is caused when the set
limits of either the total battery terminal
voltage, or the potential cof an auxiliary: ’

electrode of any individual cell, is exceeded.

Dudhol”
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SHUNT VOLTAGE REGULATOR CIRCUIT FOR NICKEL-
CADMIUM CELLS WITH AUXILIARY ELECTRODES

1.0 INTRODUCTION

The National Aeronautics and Space Administration, Goddard
Space Flight Center, (GSFC), having requirements for miniaturized
electronic equipment, contracted with MEL to develop charge
control circuits for satellite battery power systems. A shunt
voltage regulator circuit is described in references (a) and (b).
This circuit was used as a base to develop a shunt voltage regu-
lator for use with nickel-cadmium cells containing an auxiliary
electrode.

1.1 Background. Charging a nickel-cadmium cell to a nominal 100
percent of its rated capacity and than holding it in this condi-
tion without overcharging is a critical problem. The easily
measured terminal voltage of the cell cannot be used as an indicat-
ing signal for control purposes, since it is relatively flat in
the region of 100 percent recharge. The voltage characteristic
does not change materially when the cell goes into overcharge and
will remain at approximately 1.45 volts for a moderate charge
rate at 25 C,* even though gassing may be taking place within the
cell proper. Without a method for determining the stage of gas
generation the cells could easily be undercharged, with resul-
tant reduced capacity, or overcharged, with resultant excessive
gas generation and therefore possible destruction of the battery.
The inconsistency in recharging a battery of nickel-cadmium cells
is obviously a critical disadvantage in satellite applications.

1.2 Problem. Nickel-cadmium cells have been developed with an
auxiliary electrode whose potential, with respect to the cadmium
electrode, is controlled by the gas condition within the cell.

When a nickel-cadmium cell is charged, no gas is generated until
approximately 80 percent recharge has been obtained. The potential
of the auxiliary electrode is low during this period. As the

cell approaches 100 percent recharge, the gas generation within
the cell increases rapidly, and this causes a corresponding
increasing potential on the auxiliary electrode.

*Abbreviations used in this text are from the GPO Style Manual,
1959, unless otherwise noted.
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2.0 SOLUTION.

The shunt voltage regulator for nickel-cadmium cells des-
cribed here utilizes the auxiliary electrode potential from each
cell in a battery to determine automatically when a cell has
obtained 100 percent recharge. It is designed to monitor con-
tinually the auxiliary electrode potential of each cell in a
battery being charged and allows optimum recharging of the
attery under given conditions. As the auxiliary electrode
otential of any onc cell rises above a preselected value, the
control circuit will reduce the charge current to the battery
to a predetermined trickle charge level by "clamping" the system
terminal voltage at its lower level. In addition, should the
battery terminal voltage reach a maximum set level before an
auxiliary electrode voltage increases, the control circuit will
"clamp" the system terminal voltage to an upper voltage level.
All excess available charging current will be shunted around the
battery.

A block diagram of this control circuit appears in Figure 1,
with a complete component diagram, Figure 1-A of Appendix A.
Appendix B gives a detailed explaination of the voltage detector
used in this device. A laboratory model, which combines this
shunt voltage regulator circuit and an improved version of a
series charge current control circuit (MEL Report 25/65 of April
65), is described in Appendix C and shown in block diagram form
in Figure 1-C and schematically in Figure 2-C.

3.0 FUNCTIONAL CIRCUIT DESCRIPTION

5.1 Circuit Operation. The shunt voltage regulator circuit for
nickel-cadmium cells with auxiliary electrodes is shown in block
diagram form in Figure 1, The unmodified shunt voltage regulator
used as a basis for this circuit is described in the Data Book,
reference (a), and its use as a two-level voltage limiter as used
in this circuit is explained in reference (b). The main differ-
ence between this shunt regulator and the one in reference (b) is
that the lower battery terminal "clamp" voltage is controlled by
the output from the auxiliary electrode detectors rather than by a
current detector.

3.1.1 The shunt regulator for cells with auxiliary electrodes con-
sists of four subcircuits: a detector section (one for each cell),
a square-wave generator, a control circuit, and a current-dump
section.
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Figure 1

Shunt Regqulator for Cells
with Auxiliary Electrodes

e Each detector monitors the auxiliary electrode potential
of its cell and translates this to a direct~-current voltage
level.

e The square-wave generator provides the drive signal
necessary for detection operation.

® The control circuit amplifies the output of the detec-
tor section to control the current-dump circuit.

® The current-dump circuit acts as a voltage-controlled
impedance to "clamp" the voltage of the battery at a level
determined by the control circuit.

3.1.2 The purpose of this shunt regulator for cells with
auxiliary electrodes is to allow a battery to receive maximum
current until gas generation within a cell of the battery pro-
duces a voltage level on the auxiliary electrode that causes
the shunt regulator to voltage-limit the battery. As the
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cells in the battery approach 100 percent recharge, gas is
generated, producing a rising auxiliary electrode potential.

The first cell's auxiliary electrode to reach the preset "con-
trol initiation" value will cause the current-dump circuit to
begin to shunt current around the battery. As the cells!
auxiliary electrode potential continues to increase, the current-
dump circuit shunts an increasing amount of current to ground
thus decreasing the charging current into the battery (assuming

the charging scurce is current limited). That is to say, the
effective impedance of the shunt regulator -has been decreased

thus allowing an increased current flow through it. This action
continues until any cell's auxiliary electrode reach the "final'
value, at which point the current-dump circuit is shunting
virtually all available current from the charging supply to
ground. That is, the effective impedance has been lowered to a
point such that the terminal voltage of the shunt regulator has
been lowered to a point such that the terminal voltage of the
shunt regulator has been clamped at the proper value, this
voltage being determined by the number of cells in the battery
and the ambient temperature. The battery will then float on
the regulator and receive just enough current to maintain its
terminal voltage at this lower clamped value.

Should the battery terminal voltage reach a predetermined maxi-
mum value before auxiliary electrode potential reaches the con-
trol value, the shunt regulator will clamp at this upper maxi-
mum value. Afterward, if a third-terminal potential rises
beyond the control value, the system terminal voltage will be
reduced and clamped in the lower clamped terminal voltage condi-
tion.

The upper clamped terminal voltage is adjusted for the number
of cells in the battery and is automatically compensated for
variations in battery voltage with temperature changes.

A graph of the upper and lower terminal voltage clamped states
with respect to temperature, for a battery of 11 cells, appears
as Figure 2.
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Figure 2

Temperature Characteristics of
Shunt Voltage Regulator

4.0 SUMMARY AND CONCLUSIONS

A shunt voltage regulator for nickel-cadmium cells has been
developed that fully meets the original design objectives. The
circuit has been temperature compensated to yield the desired
terminal voltage characteristic over the range of -20 to +io c.
Because of this compensation, the circuit's terminal voltage
will conform to the terminal voltage characteristics of nickel-
cadmium cells over this temperature range, as shown in Figure 2.
Compensation for temperature-caused changes in auxiliary elec-
trode potential can be added to the detector circuit if it is
found to be necessary.

At the request of NASA, instead of a prototype of this cir-
cuit alone, one of this circuit integrated with an improved
form of the series charge current control circuit (MEL 25/65 of
April 1965) was built and delivered. This device is described
in Appendix C.
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Appendix A

Circuit Description of the Shunt Voltage Regulator
for Nickel-Cadmium Cells with Auxiliary Electrodes
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References in this appendix are to Figure 1-A which illustrates the
stage-by-stage operation. The appendix is a narrative description
of the circuit proper and adjustments in the main portions of the
shunt voltage regulator for nickel-cadmium cells with auxiliary
electrodes. Finally, a parts list is provided.

The square-wave generator is a standard astable multivibrator
followed by an emitter-follower stage. It consists of Resistors

R, through Ry, Capacitors C3 and C)j, and Transistors Qj, Qo, and

Qoo. It provides approximately a 500-cycle, 5.5-volt positive
square wave to the detectors as a sampling signal. The combina-
tion of R5 and Diodes D3 and D7 provide a nearly constant bias
voltage for the square wave generator.

Each detector consists of Q). D)y through Dg, Rg through Rg, Ryj.
Cp, and Transformer T;. If a cell is in a discharged condition,
its auxiliary electrode potential is virtually zero; thus,
virtually no direct current flows through D6' Rg and the direct-
current side of Tj;. For the square-wave sampling signal in the
alternating-current side of Ty, this path appears as a high re-
flected impedance. Therefore, the energy of the square wave is
stored in Cp, since the path through D5, Cor is a lower impedance.
This allows Co to maintain a direct-current voltage level suffici-
ent to bias Q) in a near saturation state. As the nickel-cadmium
approaches 100 percent recharge, its auxiliary electrode potential
increases, thus allowing a low direct-current to flow through Dg,
Rg, and the direct-current side of Ty. As this current increases
(with an increasing auxiliary electrode potential), the dynamic
impedance of Diode D, decreases, thus lowering its reflected im-
pedance as seen by the square wave. As this impedance decreases,
more energy is dissipated through Ty, and less is stored in Cs.

This will lower the direct-current voltage maintained by 02 and

will cause Q) to travel through its active region toward cutoff.
When Q) is near saturation, its collector voltage is held at less
than 1 volt; but as it moves through the active region toward
cutoff, its collector voltage increases from less than a volt
toward a maximum voltage nearly equal to the bias voltage. With
Diodes D)y of all detectors connected at this cathodes, they act

as an "OR" circuit, meaning that the highest anode voltage is that
which appears at the cathode connection of the diodes. Therefore,

the detector with the highest output voltage will be the control--
ling signal.
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The control section consists of QB' Q5 through Q9, Cq, C5, Rg s

through Rpp, Ryp, Dyq, Do, and TCy through Tcy. This section of
the circuit performs two functions.

The first function is to act as the sensing and amplifying portion
(i.e., the feedback loop) of a shunt voltage regulator. To per-
form this function, voltage divider R15, Ry1gs, TCy monitors the
system terminal voltage and applies a portion of it to the base of
Q. The differential amplifier, Qg, Q7. compares this voltage to
a standard, maintained by Dj, Dy, and Ryy. If the system terminal
voltage tends to increase beyond its design limit, the output volt-
age of the differential amplifier will increase (an error signal)
causing increased conduction in Qg. This, in turn, causes in-
creased conduction in Qg by direct application and thus increases
the output voltage of the control section. The second function

of this section is to amplify the detector output signal, modify
it, if necessary, according to the desired temperature character-
istic, and apply this signal to the current-dump section. This

is accomplished by applying the detector output signal to the

gate of Q3 through Ry and Rj,- The field effect transistor (FET)
Q0% is used as a variable impedance across the bottom half of Volt-

age Divider Ryp, Ryz Ryjy, TC,, TC,, TC,. As the detector output
increases, the effective impedance of QB increases, thus allowing
a higher voltage at the base of Qg causing the conduction of Qg to
increase. The effect of increased conduction of Qr on Q6 is
similar to the effect of an increase of system terminal voltage.
Therefore, the subsequent action will be as described above until
the output voltage of the control section is increased due to the
increase in detector output.

The current-dump section performs as its name implies. A rising
control-section output applied directly to the bases of Q10 Qll'

Q1o Q13 causes these transistors to conduct enough current from
the charging supply so that its terminal voltage cannot increase
above the desired value. This system was designed with four
parallel dumping transistors so that, for space applications, the
heat dissipated can be distributed. Resistors R2 ¢+ Rojys R2 . Rogo
are for feedback purposes to cause the dumping trgnsistors %o
self-balance.

Temperature compensation of the terminal voltage of this circuit
is accomplished by the sensistors¥* TCl through TC&' From the

*A trade name for a silicon resistor with a temperature coefficient

of +0.7%/°C
A-2
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above explanation it is easily seen how the system terminal volt-
age clamp (upper voltage clamp), initiated by a rising battery
terminal voltage, is temperature compensated by TC). For example
if the ambient temperature increases, the resistance value of TCy
increases, raising the base bias voltage of Q, which results in

a lowered system terminal voltage as desired. It is also realiz-
able that this will aid the compensation of the system terminal-
voltage clamp (lower voltage clamp) initiated by the third-terminal
inputs. However, the principal compensating elements for this
voltage clamped state are TCl, TC,, TCz. If the system were in
this lower clamped state, a rising ambilient temperature would
increase the resistance values of these sensistors, thus increas-
ing the base bias voltage of Qg which will in turn decrease the
system terminal voltage. By using various temperature-sensitive
elements elsewhere in the two-voltage dividers containing TC,
through TC,, a wide range of system terminal voltage temperature
characteristics can be obtained.

A number of adjustments have been provided in this circuit design
so that a wide range of operating characteristics can be selected.
The shunt voltage regulator as described here was designed to
operate with nominally 11 cells. If it is desired to operate with
greater than 13 cells, or less than 9 cells, then some minor
changes in component values may be necessary besides the addition

or subtraction of detectors.

It is obvious from the previous compensation discussion that
adjusting Potentiometer R can alter the level of upper clamped
voltage since it controls the base bias voltage of Q,. Increas-
ing Rig raises the level of the upper clamped voltage. Again,
this control will have some effect on the lower clamped voltage.
However, the primary level control for the lower clamped voltage
is R13 which controls the base bias voltage of Q5,

Obviously then, when this circuit: is calibrated, the upper
clamped voltage should be set first before the lower clamped volt-
age. This can be accomplished by setting R, in each detector to

approximately 8000 ohms, ascertaining that all detector inputs

are below 50 millivolts (or by disconnecting them), setting the
charging supply terminal voltage higher than the desired upper
clamped voltage, then adjusting Ry until the dump circuit con-
ducts enough current to lower the Ctharging supply terminal volt-
age to the desired upper clamped voltage. (If a laboratory power
supply is used as the charging source, its output current should
be limited to the maximum value allowable for the cells to be used.
i.e., 3 amperes for the design described here). Now raise any

a-3
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detector input to or above 300 millivolts and adjust R until
the system terminal voltage is reduced to the lower clafmped value.
This completes the terminal voltage calibration.

Now with one detector input set at the desired "initiation"
value, and all others below 50 millivolts, and with R9 and R42

adjusted to zero, adjust R; in the detector with the desired input
until the system terminal voltage just begins to decrease. Next,
raise this detector input to the desired "final" value (this will
put the system terminal voltage in the lower clamped state) and
increase the value of R, and/or R4 until the system terminal
voltage just begins to increase. This sets the active region of
third-electrode input control. Repeat this readjustment of R

for each detector using the desired input "initiation" value and
the calibration procedure will be complete.

The losses of this voltage regulator circuit itself are nominal.
The maximum possible loss which occurs just prior to current-
dumping action, is 750 milliwatts.
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PARTS LIST FOR SHUNT VOLTAGE CIRCUIT

Regulator

Less expensive

Equivalents

for Laboratory Wakefield Heat

Transistors Instruments Sink No.

Qy 2N1303
Qo 2N1303
Q3 oN2841
Q)  2N930 (2N32643)
Qg 2N1613 (2N3564)
Qg  2N2907 (2N3638)
Q7 2N2907 (2N3638)
08  2N1482 (2N3568)
Qg 2N2905 (2N3638) NF-209
210 154-04 Westinghouse or 2N3232 NC-403
Q11 154 -04 Wwestinghouse or 2N3232 NC-403
Q1o 154-04 Westinghouse or 2N3232 NC-403
013 154-04 westinghouse or 2N3232 NC-403
Qnp 2N1302

NOTE: Semiconductors noted in parenthesis are Fairchild Semi-
conductor Epoxy Packages

Sensistors
Tcl 10K
Tc2 10K
TC3 10K
Tey 3.9K

Tc = Sensistors 1/4 watt (Silicon resistors by Texas Instruments)




T —

Resistors

R, 10K

Ro b

Ry 47R

Ry 10K

R5 255 ohm

R6 10K

R.7 25K Pot.

Rg 475 ohm

Rg 1 Meg Pot.
RlO 22 Meg

Rjp  FK

Ryp 31.6K

R13 10K Pot.
Ry 5-IK

R15 5K Pot.

Rig 3.92K

R17 5.1K

Rig 5-IK

ng 5.1K

Rog 10K

R21 10K

Ros 560 ohm
R23 10 ohm, 10W
Ro) 10 ohm, 10W
R25 10 ohm, 10W
R26 10 ohm, 10w
Ry, 4.7

Ryo 1 Meg Pot.
NOTE:

MEL ' Report 93/66

Wakefield Heat Sink No.

(Dale) NC 623
(Dale)

Dal

(Pale) NC 623
(Dale)

All Resistors 1/2 watt unless noted otherwise. 5% for

Laboratory instrument.

1% for space model

All Potentiometers 25 turns wire wound except R9 and Ryo
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Capacitors
Cl 10 uf
10 uf
c2
.0 uf
C 33
C .03% uf
4
C_ 10 uf
)

All Capacitors solid tantalum
20%, 35 WVDC unless noted
otherwise.

Diodes

D1 IN757 (Zener)
D2 1N191

D3 1N751 (Zener)
D4 1NU5T7

Do IN45T

Dg 1N191

D

7 1N457

Transformer

Tl - Sprague Electric Company

R1111

~
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Appendix B

Theory of Diode Detector Operation
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The circuit diagram of a detector from the charge-current control
circuit for nickel-cadmium cells with control electrodes (three-
terminal cells) is shown in Figure 1-B. The basic concept which
governs the operation of this detector is shown in the equivalent
circuit of the input portion of this detector in Figure 2-B. The
variable impedance, Rg, in Figure 2-B is the effective impedance
of Diode Dg and Resistor Rg reflected to the alternating-current
side of the 1 to 1 transformer, Tj. Dg and Rg are connected to
the direct-current side of Tj. The characteristic curve is equal
to the inverse of the impedance of this Dg, Rg combination. It
can be seen from Figure 3-B that, as the voltage across Dg, Rg
increases, the current through them increases and their effective
impedance decreases. Therefore, as the potential on the control
electrode (third terminal) increases, the effective impedance of D
Dg, R8 decreases. The impedance of the direct-current side of

Ty remains constant and is small compared to the impedance of Dg¢,
Rg, and is therefore ignored. Now it can be seen from Figures
1-B and 2-B that a rising third-terminal potential, causing a
reduction in the reflected impedance, Ry, will decrease the

power from the square wave generator available to the amplifying
portion of the detector, through D5 and Cp, by dissipating it in
Rp. The square-wave generator and resistor R supply a relatively
constant current to the parallel combination of Ry and R, (the
effective impedance of the input to the amplifying portion of the
detector) and L, the alternating-current winding of transformer
Ty. Therefore, as Ry decreases, it will decrease the impedance
of this parallel combination, and a smaller voltage drop will
appear on the base of Q4-

Mathematically, this concept is expressed by:

Rp = Rg + Rp
-V
Ip
Ip = I (e @D - 1) the diode equation
VDkT
q
D
IR(e ' - 1)
kT
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where
RD = effective impedance of Diode D6
Vp = voltage across D6

T. = current through D6

Ip = saturated value of reverse current through Dg

g = electron charge

k = Boltzmann's constant

T = absolute temperature, K
VR8 = voltage across Rp

V = third~terminal potential

It is easily seen that Ry will decrease as V increases, since

€ qVD/kT increases at a faster rate than Vp alone as V increases.
It is understood that Rp and the combined impedance of Dg and Rg
are identical, since an impedance can be "reflected" from one
side of a transformer to the other with a multiplying factor
equal to the transformer turns ratio (in this case, 1 : 1).

This proves the inverse dependence of the reflected impedance,
Rp, on the control electrode (third-terminal) potential of the
cell to which this detector is connected.

Also (from Figure 2-B):

I, = v
Rp Rp
R

A
XL | Rr || Ra v
Ra \x. || R ¢
L || R“ Ry * Ry
Ve =A|:u(t) -u (t-a) + u (t-2a) - ]
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%L ”RR “ *a = g R
R Ra + xq,
RR + RA
Rp X},
R R
R ¥ *a a [u (t) - u (t-a) + u (t-2a) - ...]
RRRA+XL
R, + R
- VRA _ R A
Rp Ry X
R+ R
R A + Ry
RRRA + X
where

current into RA

RA

VRA voltage across R,

Rp effective impedance of the input to the amplifying

portion of the detector

X impedance of the alternating-current winding of the
L transformer, Ty

Ve output voltage of square wave generator

A amplitude of Ve

u(t), u(t-a) ... = time displaced unit step functions

It is evident that as Rp decreases, VRA and IR decrease, thus

A

reducing the voltage (aﬁd hence the base current of Qh) available
to the amplifying portion of the detector.
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The initial point of the active region (sensitivity) of these
detectors can be varied from zero up to several hundred volts
by a proper choice of the detector diode, Dg, and Resistor Rg.
Conventional diodes or stabistors are used for the low voltage
range and Zeners can be used for high voltages.

The width of the active region is also affected slightly by the
choice of Dg and Rg, but in the main is set by the choice of
circuitry immediately following the detector outputs. The in-
put impedance and current required from the third terminal

will vary accordingly.

Transformer T; in each detector provides complete isolation
between cells and between each cell and the circuitry which
follows it. Also the mode to which all detector outputs are
connected constitutes an "OR" circuit which gives both control
logic and electrical isolation between individual detector
outputs.
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Appendix C

The Combined Shunt Voltage Regulator and Series
Charge Current Control Circuit for Three Nickel-Cadmium
Cells with Control Electrodes



——
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The shunt voltage regulator and the series charge current control
circuit for auxiliary electrode nickel-cadmium cells integrated
into one laboratory instrument are shown in block diagram form in
Figure 1-C and schematically in Figure 2-C. This device provides
the user with the choice of using either a shunt or series form
of current control in a three-terminal cell testing program.

As seen in Figure 1-C, the same square-wave generator and detec-
tor sections are used in the two control systems. (The shunt
control system used in this instrument is exactly as described
above in this report). However, since the entire instrument will
not be temperature cycled with the cells under test, the tempera-
ture compensating elements are connected at the end of a cable,
as noted in Figure 2-C, instead of internally in the circuit.
Placing the compensating elements in the temperature chamber
along with the cells will insure maintenance of the desired
system terminal voltage temperature characteristics. The shunt
control system, as shown in Figure 2-C, is selected by throwing
switch S, to its "shunt" position and plugging the charging power
source into its "shunt" receptacle. As shown, this system is
designed to handle a 9-, 10-, or 1ll-cell battery. any unused detec-
tor inputs are to be left open-circuited.

The series control system shown in Figure 2-C is an improved
version of that described in MEL Report 25/65 of May 1965. The
most obvious change is that it is now self-powered, no external
power supply is needed. The inverter power supply is a two-
transformer inverter, filter, and direct-current voltage regulator
which transforms power from the charge current supply to a stable
bias voltage for the control circuite. The Switches Sz and S

are included to alter the biasing conditions so that the series
control system can be used with batteries of 5 cells or batteries
of 10 or 11 cells. The input to the control section has been
improved to allow a higher fan-in from the detector section.

The input impedance of the field effect transistor, Qq7e which

is in excess of 100 megohms, is used for this purpose. The FET,
Q37, operates as a noninverting amplifier which raises the in-
put to Q;¢g when the detector output increases. An increasing
input to Q16 lowers its output, thus lowering the input to 015
and tending to turn it off. As 015 is turned off the base

drive of the series control element, qu is decreased which
action, in turn, decreases the charge current.



MEL Report 93/66

All other operations of the series control system are as reported
in MEL Report 25/65 of May 1965. Operation of the series system
is selected by throwing Switch s;, to its "series" position,
plugging the charging power source into its series receptance,
and selecting operation for either a 5-cell battery or a 10-

or 1ll-cell battery by means of Switches 83 and 85.
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Circuit and Shunt Voltage Regulator for
Nickel-Cadmium Cells with Control Electrodes
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